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Abstract. Given a year with n ≥ 1 days, the Birthday Problem asks for the

minimal number X (n) such that in a class of X (n) students, the probability

of finding two students with the same birthday is at least 50 percent. We derive

heuristically an exact formula for X (n) and argue that the probability that a

counter-example to this formula exists is less than one in 45 billion. We then

give a new derivation of the asymptotic expansion of Ramanujan’s Q-function

and note its curious resemblance to the formula for X (n).

1 Introduction

It is a surprising fact, apparently first noticed by Davenport around 1927, that in a class of 23

students, the probability of finding two students with the same birthday is more than 50 percent.

This observation, and the multitude of related problems that it raises, have been discussed by many

distinguished authors, including von Mises [19], Gamow [9, pp. 204–206], Littlewood [17, p. 18],

Halmos [11, pp. 103–104], and Davenport [6, pp. 174–175]. The interested reader is referred to [22]

for a historical account and to [12] to experience the problem experimentally.

Given a year with n ≥ 1 days, the variant of the Birthday Problem studied here asks for the min-

imal number X (n) such that in a class of X (n) students, the probability of a birthday coincidence

is at least 50 percent. In other words, X (n) is the minimal integer x such that

P (x) :=

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− x− 1

n

)
(1)

is less than or equal to 1
2 . Clearly, X (n) is at least 2 and at most n + 1. The first 99 values of

X (n), Sloane’s A033810 [23], are given here:

n 1–2 3–5 6–9 10–16 17–23 24–32 33–42 43–54 55–68 69–82 83–99

X (n) 2 3 4 5 6 7 8 9 10 11 12

The bounds √
n+ 1

4 + 1
2 ≤X (n) <

√
2n log 2 + 1

4 + 3
2 (2)
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follow easily from P (x) ≥ 1 −
(
1
n + 2

n + · · ·+ x−1
n

)
= 1 − x2−x

2n and P (x) ≤ exp
(
− 1
n

)
exp

(
− 2
n

)
· · ·

exp
(
−x−1

n

)
= exp

(
− x2−x

n

)
.1 Mathis [18] showed the better lower bound√

2n log 2 + 1
4 −

1
2 < X (n). (3)

Ahmed and McIntosh [1] gave a short proof of the asymptotic approximation X (n) ∼
√

2n log 2.

In the following, we show

3− 2 log 2

6
< X (n)−

√
2n log 2 ≤ 9−

√
86 log 2. (4)

As will be seen, these bounds are optimal in the sense that (3 − 2 log 2)/6 ≈ 0.269 is the infimum

of the sequence X (n) −
√

2n log 2, while 9 −
√

86 log 2 ≈ 1.279 is the maximum, taken for n = 43.

Contrary to (2) and (3), the bounds (4) are sufficiently tight to give the exact value of X (n) in

most cases, for example X (365) = 23.

In general, it follows from (4) that X (n) always equals either
⌈√

2n log 2
⌉

or
⌈√

2n log 2
⌉

+ 1

where dxe denotes the ceiling function. We prove that the formula

X (n) =
⌈√

2n log 2
⌉

(5)

holds for a set of integers n with asymptotic density (3 + 2 log 2)/6 ≈ 0.731, and moreover that

X (n) =

⌈√
2n log 2 +

3− 2 log 2

6

⌉
(6)

holds for “almost all” n, i.e., for a set of integers n with asymptotic density 1. Furthermore, we

show that the formula

X (n) =

⌈√
2n log 2 +

3− 2 log 2

6
+

9− 4(log 2)2

72
√

2n log 2
− 2(log 2)2

135n

⌉
(7)

referred to in the title of this paper holds for all n up to 1018, and we give a heuristic argument that

the probability that a counter-example to this formula exists is less than one in 45 billion.

Finally, we use the method developed here to give a new derivation of the asymptotic expansion

of Ramanujan’s Q-function which has a curious resemblance to (7).

2 Power Sum Polynomials

It follows immediately from the definition that X (n) can be described as the minimal integer x

such that

− logP (x) ≥ log 2. (8)

1Cf. [11, p. 104], but note that the inequality P (x) < e−x2/2n given there is not correct.
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By (1) and the Taylor expansion of log(1− z), we may write

− logP (x) = − log

(
1− 1

n

)
− log

(
1− 2

n

)
− · · · − log

(
1− x− 1

n

)
=

∞∑
i=1

1i

i · ni
+
∞∑
i=1

2i

i · ni
+ · · ·+

∞∑
i=1

(x− 1)i

i · ni
(9)

=
∞∑
i=1

1i + 2i + · · ·+ (x− 1)i

i · ni
.

This derivation is due to Tsaban [24].

For i ≥ 1, the sum 1i + 2i + · · ·+ (x− 1)i can be expressed as

Si(x) :=
1

i+ 1

i∑
t=0

(
i+ 1

t

)
Btx

i+1−t (10)

where Bt is the t-th Bernoulli number, cf. [10]. It was this with this famous formula that Jakob

Bernoulli, as related in his Ars Conjectandi [3], computed

110 + 210 + · · ·+ 100010 = 91409924241424243424241924242500

within half of a quarter of an hour! It appears that Si(x) is a polynomial of degree i+1 with leading

coefficient 1
i+1 . The first few such power sum polynomials are

S1(x) = 1
2x

2 − 1
2x,

S2(x) = 1
3x

3 − 1
2x

2 + 1
6x,

S3(x) = 1
4x

4 − 1
2x

3 + 1
4x

2.

Incidentally, the beautiful identity 13 + 23 + · · · + x3 = (1 + 2 + · · · + x)2 was discovered by the

Indian mathematician Aryabhata in the fifth century AD, cf. [13].

Using (9) and (10), we can express − logP (x) by the series

L(x) :=
∞∑
i=1

Si(x)

i · ni
=
x2 − x

2n
+

2x3 − 3x2 + x

12n2
+
x4 − 2x3 + x2

12n3
+ · · · (11)

The function P (x) is only defined for integers x > 0; hence − logP (x) = L(x) holds for such x only.

It seems we can now define L(x) for all real x > 0 and that, if we find a solution x to the equation

L(x) = log 2, we may conclude X (n) = dxe. This idea, however, turns out not to work because

(11) diverges for all real numbers x > 0 except x = 1, 2, . . . , n. The reason is that for x fixed and i

going to infinity, Si(x) grows much faster for non-integral values of x than for integral values. More

precisely, the “normalized” functions
(2π)i+1

2i!
· Si(x)

converge (pointwise) to ± sin(2πx) or ±(cos(2πx)− 1) for i going to infinity in a fixed residue class

modulo 4, cf. [7]. We will see later how to get around this problem by truncating L(x).
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For later use, we note the following lemma.

Lemma 1. The power sum polynomials Si(x) satisfy

Si(x) < 1
i+1x

i+1 for all integral x > 0 (12)

as well as

S′i(x) > 0 for all real x > i
2 . (13)

Proof. The first inequality follows immediately from Si(x) = 1i+ · · ·+(x−1)i. To prove the second,

write

S′i(x) =
i∑
t=0

(
i

t

)
Btx

i−t = xi − i
2x

i−1 +
i∑
t=2

(
i

t

)
Btx

i−t.

Clearly, xi − i
2x

i−1 is positive for x > i
2 . The Bernoulli numbers Bt are zero for t ≥ 3 odd, cf. [10].

For t ≥ 2 even, they are given by Euler’s remarkable formula

Bt = (−1)t/2+1 · ζ(t) · 2t!

(2π)t

and hence satisfy

−Bt+2

Bt
=
ζ(t+ 2)

ζ(t)
· (t+ 2)(t+ 1)

(2π)2
<

(t+ 2)(t+ 1)

(2π)2
.

From (
i
t+2

)(
i
t

) =
(i− t)(i− t− 1)

(t+ 2)(t+ 1)

thus follows

−
(
i
t+2

)
Bt+2x

i−t−2(
i
t

)
Btxi−t

<
(i− t)(i− t− 1)

(2πx)2
<

(
i

2πx

)2

< 1

for t even, 2 ≤ t ≤ i − 2, and x > i
2π . It follows that

∑i
t=2

(
i
t

)
Btx

i−t is non-negative for x > i
2π

since the terms have decreasing absolute values and alternating signs starting with plus. �

The assumption x > i
2 in (13) in not quite optimal but good enough for our purposes. Figure 1 shows

a logarithmic plot of S99(x) and 1
100x

100. It is striking how badly (12) fails for small, non-integral x

(roughly less than 100
2πe). For these values of x, S99(x) is approximated well by 1

100B100 ·(cos(2πx)−1).
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Figure 1.

3 The Numbers ct

Lemma 2. There is a unique sequence of real numbers c0, c1, c2, . . . with c0 > 0 such that the

expression

x∞ = c0
√
n+ c1 +

c2√
n

+
c3
n

+
c4
n
√
n

+ · · · (14)

formally satisfies L(x∞) = log 2.

Proof. Recall the definition of L(x) in (11). Inserting x∞ into L(x) gives

L(x∞) = 1
2c

2
0 +

c0c1 − 1
2c0 + 1

6c
3
0√

n
+ · · · (15)

Write (15) as L(x∞) =
∑∞

t=0 atn
−t/2. Clearly, there is a unique c0 > 0 such that a0 = log 2. For

t > 0, the coefficient at is a rational polynomial in c0, . . . , ct. Also, the only term in at involving ct

is c0ct which comes from the term 1
2x

2 in S1(x). Hence setting at = 0 leads to ct being expressed as

c−10 times a rational polynomial in c0, . . . , ct−1 and the lemma follows. �

In order to compute the numbers ct, one has to truncate L(x) and x∞ after a suitable finite number

of terms. Let

Lt(x) :=

t∑
i=1

Si(x)

i · ni

5



and

xt := c0
√
n+ c1 + · · ·+ ct−1

nt/2−1
. (16)

Then L(x∞) and Lt(xt) agree on the first t terms, and thus

Lt(xt) = log 2 +O

(
1

nt/2

)
. (17)

So if c0, . . . , ct−1 are given, ct is computed by setting the (t + 1)-th coefficient of Lt+1(xt+1) equal

to zero. In this way, one gets

c0 =
√

2 log 2, c1 =
3− 2 log 2

6
, c2 =

9− 4(log 2)2

72
√

2 log 2
, c3 = −2(log 2)2

135
etc.

Some more values are given here numerically:

t ct

0 1.177410

1 0.268951

2 0.083495

3 −0.007118

4 0.010599

5 0.015199

6 0.012099

7 0.011477

8 0.005595

9 −0.001123

t ct

10 −0.007691

11 −0.015160

12 −0.018821

13 −0.017225

14 −0.008059

15 0.012161

16 0.040053

17 0.069337

18 0.085003

19 0.059623

t ct

20 −0.033288

21 −0.213123

22 −0.457278

23 −0.647448

24 −0.543744

25 0.234529

26 2.061711

27 4.872601

28 7.455238

29 6.364906

t ct

30 −4.600721

31 −32.525344

32 −78.432870

33 −120.668962

34 −90.042864

35 147.977172

36 760.519219

37 1763.143956
...

100 1.9× 1028

The expression (14) is a formal Laurent series in n−1/2. It is not clear if it converges with the

coefficients ct defined in Lemma 2. In fact, a glance at the numerical values of the ct makes

convergence seem highly doubtful.

4 A Quasi-Asymptotic Formula

The following lemma expresses quantitatively that if Lt(x) is close to log 2 for some real x, then this

x is close to X (n). Figure 2 shows L(x) and L1(x) for n = 10.

Lemma 3. Let t ≥ 1 and n ≥ max{14(t − 1)2, 10}, and suppose x is a real number satisfying
√
n+ 1

2 < x <
√

2n. Then X (n) = dx+ εe with

|ε| <
√
n

(
|Lt(x)− log 2|+ 4

(t+ 1)(t+ 2)
·
(

2

n

)t/2)
.
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Proof. For any real y >
√
n+ 1

2 , Lemma 1 and n ≥ 1
4(t−1)2 give that S′i(y) is positive for i = 1, . . . , t

and hence

L′t(y) =

t∑
i=1

S′i(y)

i · ni
≥ S′1(y)

n
=
y − 1

2

n
>

1√
n
. (18)

It follows that the integer

xmax :=
⌈
x+
√
n · |Lt(x)− log 2|

⌉
satisfies L(xmax) > Lt(xmax) > log 2 and consequently X (n) ≤ xmax.

To bound X (n) from below, note that for integral z <
√

2n, Lemma 1 and n ≥ 10 give

L(z)− Lt(z) =
∞∑

i=t+1

Si(z)

i · ni

<

∞∑
i=t+1

(
√

2n)i+1

i(i+ 1) · ni

<
2

(t+ 1)(t+ 2)

∞∑
i=t+1

(√
2

n

)i−1
(19)

=
2

(t+ 1)(t+ 2)
· 1

1−
√

2/n
·
(

2

n

)t/2
<

4

(t+ 1)(t+ 2)
·
(

2

n

)t/2
.

Now consider the integer

xmin :=

⌊
x−
√
n

(
|Lt(x)− log 2|+ 4

(t+ 1)(t+ 2)
·
(

2

n

)t/2)⌋
.

If xmin ≤
√
n+ 1

2 , then X (n) > xmin already by (2). If xmin >
√
n+ 1

2 , then (18) gives

Lt(xmin) < Lt(x)− x− xmin√
n

< log 2− 4

(t+ 1)(t+ 2)
·
(

2

n

)t/2
and hence L(xmin) < log 2 by (19). There follows X (n) > xmin. �
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Figure 2.

Theorem 1. With the constants c0, c1, c2, . . . defined in Lemma 2, we have

X (n) =

⌈
c0
√
n+ c1 +

c2√
n

+
c3
n

+ · · ·+ ct−1

nt/2−1
+O

(
1

n(t−1)/2

)⌉
for any t ≥ 1.

Proof. This follows immediately from Lemma 3 and (17) by taking x = xt. Note that the condition
√
n+ 1

2 < xt <
√

2n holds for sufficiently large n since 1 < c0 <
√

2. �

Theorem 1 represents X (n) by something which is very similar to an asymptotic series in the sense

of Poincaré without actually being one because of the brackets denoting the ceiling function. For

example, the coefficients in a true asymptotic series are uniquely determined [4], but it is not clear

for how many of the ct this is the case.

5 Explicit Bounds

Next, we investigate what constants lie behind the O-symbol in Theorem 1 for small t. Take, say,

t = 6 and suppose n ≥ 10. Then n > 1
4(t − 1)2 and

√
n + 1

2 < x6 <
√

2n as required by Lemma 3.

Write

L6(x6) =

6∑
i=1

Si(x6)

i · ni
= log 2 +

a7
n3

+
a8

n7/2
+ · · ·+ a41

n20

by inserting (16) into (10). Computing the real constants a7, . . . , a41 numerically gives

|L6(x6)− log 2| ≤
(
|a7|+

|a8|√
10

+ · · ·+ |a41|
1017

)
1

n3
<

1

10n3
.
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Also note
4

(t+ 1)(t+ 2)
·
(

2

n

)t/2
=

4

7n3
.

It now follows from Lemma 3 that

X (n) =

⌈
c0
√
n+ c1 +

c2√
n

+
c3
n

+
c4
n
√
n

+
c5
n2

+
ε6

n2
√
n

⌉
(20)

with |ε6| < 1 for all n ≥ 10. It can easily be checked that (20) also holds for n < 10, but this is of

secondary concern to us since the bound on ε6 is rather weak, and (20) is used only as a stepping-

stone to the sharper results in the following theorem.

Theorem 2. With c0, . . . , c4 as defined in Lemma 2, the following formulas hold for all n ≥ 1:

(a) X (n) =
⌈
c0
√
n+ ε1

⌉
with c1 < ε1 < 0.28,

(b) X (n) =

⌈
c0
√
n+ c1 +

ε2√
n

⌉
with 0.083 < ε2 < c2,

(c) X (n) =

⌈
c0
√
n+ c1 +

c2√
n

+
ε3
n

⌉
with c3 < ε3 < −0.007,

(d) X (n) =

⌈
c0
√
n+ c1 +

c2√
n

+
c3
n

+
ε4
n
√
n

⌉
with c4 < ε4 < 0.011.

Proof. Let ε6 be as in (20) and put

ε1 = c1 +
c2√
n

+
c3
n

+
c4
n
√
n

+
c5
n2

+
ε6

n2
√
n
,

ε2 = c2 +
c3√
n

+
c4
n

+
c5
n
√
n

+
ε6
n2
,

ε3 = c3 +
c4√
n

+
c5
n

+
ε6
n
√
n
,

ε4 = c4 +
c5√
n

+
ε6
n
.

The four statements then hold with each εi within the stated bounds for all sufficiently large n,

i.e., for n greater than 100, 200, 10000, and 5000, respectively. The remaining cases are checked by

explicit computation. �

The same proof shows that the upper bound on ε1 can be strengthened to ε1 < 0.277 for n 6= 43.

This, together with c1 < ε1, gives the inequalities (4) mentioned in the introduction. It follows from

Theorem 2.b and the fact that c0
√
n+ c1 is dense modulo 1 that X (n)− c0

√
n has limit inferior c1

and limit superior 1 + c1.

6 Uniform Distribution

Let {x} denote the fractional part of x. A sequence of real numbers an, n = 1, 2, . . . , is called

uniformly distributed modulo 1 if, for every interval I contained in the unit interval, the number
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A(N) of indices n = 1, . . . , N with {an} ∈ I satifies

A(N)

N
→ |I| for N →∞,

i.e., the set of indices n with {an} ∈ I has asymptotic density |I|.
Lemma 4 below is due to van der Corput; it is proved in [5] and [16] using Weyl’s Criterion.

The following proof is perhaps more direct.

Lemma 4. Let an be a sequence of real numbers. Suppose the sequence ∆an := an+1 − an is

decreasing with ∆an → 0 and n ·∆an →∞ for n→∞. Then an is uniformly distributed modulo 1.

Proof. First note that an is strictly increasing with an →∞. Let I be any interval contained in the

unit interval. We may assume that p = |I| satisfies 0 < p < 1. Let J be the interval between I and

I+ 1, and put q = |J | = 1−p. We may also assume that the first element a1 of the sequence is in I.

For i ≥ 0, let Ai and Bi be the numbers of indices n such that an ∈ I+ i and an ∈ J+ i, respectively.

From ∆an → 0 it follows that Ai →∞ and Bi →∞. We have to show that the fractions

ui :=
A0 +A1 + · · ·+Ai

A0 +B0 +A1 +B1 + · · ·+Ai
, vi :=

A0 +A1 + · · ·+Ai
A0 +B0 +A1 +B1 + · · ·+Bi

both converge to p. For any i with Bi 6= 0, let m be the index such that am is the last element of

the sequence in J + i. Then

Bi ≤
q

∆am
+ 1 and Ai+1 ≥

p

∆am
− 1 (21)

since the sequence ∆an is decreasing. The first inequality of (21) and the assumption n ·∆an →∞
give

Bi
A0 +B0 +A1 +B1 + · · ·+Bi

=
Bi
m
≤ q

m ·∆am
+

1

m
→ 0 for i→∞

and thus

ui − vi → 0 for i→∞. (22)

It also follows from (21) that

Ai+1 + 1

Bi − 1
≥ p

q
, lim inf

i→∞

Ai+1

Bi
≥ p

q
, lim inf

i→∞

A1 + · · ·+Ai+1

B0 + · · ·+Bi
≥ p

q

and hence

lim inf
i→∞

ui ≥ p. (23)

An analogous argument using the last element in I + i gives

lim sup
i→∞

vi ≤ p. (24)

It now follows from (22), (23), and (24) that ui → p and vi → p for i→∞ as required. �

Note that the sequence an = log n is (correctly) excluded by the assumption n · ∆an → ∞. For
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∆an decreasing, the two assumptions ∆an → 0 and n ·∆an →∞ can be stated compactly as
1
n ≺ ∆an ≺ 1. It is easy to see that ∆an ≺ 1 is equivalent to an ≺ n, and that 1

n ≺ ∆an implies

log n ≺ an. However, log n ≺ an ≺ n does not guarantee uniform distribution. Consider, for

example, the sequence given by a2 = 2 and ∆an = 2−2
i

for 22
i ≤ n < 22

i+1
and i ≥ 0. It satisfies

∆an = 1
n infinitely often and consequently is not uniformly distributed, but it is a nice exercise to

show that an > 3
√
n for all n ≥ 2.

7 Exact Formulas

Theorem 3. For every n ≥ 1, the following four statements hold:

X (n) =
⌈
c0
√
n
⌉

or X (n) =
⌈
c0
√
n
⌉

+ 1, (25)

X (n) =
⌈
c0
√
n+ c1

⌉
or X (n) =

⌈
c0
√
n+ c1

⌉
+ 1, (26)

X (n) =

⌈
c0
√
n+ c1 +

c2√
n

⌉
or X (n) =

⌈
c0
√
n+ c1 +

c2√
n

⌉
− 1, (27)

X (n) =

⌈
c0
√
n+ c1 +

c2√
n

+
c3
n

⌉
or X (n) =

⌈
c0
√
n+ c1 +

c2√
n

+
c3
n

⌉
+ 1. (28)

Let (25.I)–(28.I) and (25.II)–(28.II) denote the first and second alternatives of (25)–(28), respec-

tively. Then (25.I) holds for a set of integers n with asymptotic density 1 − c1 ≈ 0.731, whereas

(26.I), (27.I), and (28.I) hold for a set of integers n with asymptotic density 1.

Proof. The four statements (25)–(28) follow directly from Theorem 2. As before, let {x} denote the

fractional part of x. It then follows from Theorem 2.b that (25.I) holds precisely when{
c0
√
n
}
≤ 1−

(
c1 +

ε2√
n

)
. (29)

The sequence {c0
√
n} is uniformly distributed in the unit interval by Lemma 4 above. The right-

hand side of (29) converges to 1− c1. Therefore, the set of integers n satisfying (29) has asymptotic

density 1− c1. Similarly, (26.I), (27.I), and (28.I) all hold, say, when{
c0
√
n+ c1

}
≤ 1− 1√

n
. (30)

From the uniform distribution of the left-hand side of (30), it follows that the set of integers n

satisfying (30) has asymptotic density 1. �

Conjecture 1. (a) The number of positive integers n ≤ x for which (26.II) holds is asymptotically

equal to 2c2
√
x ≈ 0.167

√
x.

(b) The number of positive integers n ≤ x for which (27.II) holds is asymptotically equal to

−c3 log x ≈ 0.007 log x.

(c) There are no positive integers n for which (28.II) holds.

11



We give some arguments in favour of Conjecture 1. It follows from Theorem 2.c that (26.II) holds

precisely when {
c0
√
n+ c1

}
> 1−

(
c2√
n

+
ε3
n

)
. (31)

Heuristically, the “probability” that (31) holds for any given n is c2/
√
n+ε3/n. Hence, the expected

number of integers n ≤ x for which (31) holds is

x∑
n=1

(
c2√
n

+
ε3
n

)
∼ 2c2

√
x.

Similarly, (27.II) holds precisely when{
c0
√
n+ c1 +

c2√
n

}
< −

(
c3
n

+
ε4
n
√
n

)
,

and the expected number of integers n ≤ x for which this happens is

−
x∑

n=1

(
c3
n

+
ε4
n
√
n

)
∼ −c3 log x.

Even though this argument suggests that there are infinitely many counter-examples to (27.I), it

also suggests that these counter-examples are extremely rare. For example, the expected number of

such integers n less than exp(−c−13 ) ≈ 1061 is only one, and indeed the author has been unable to

find any.

Finally, (28.I) holds whenever{
c0
√
n+ c1 +

c2√
n

+
c3
n

}
≤ 1− 0.011

n
√
n
, (32)

and in the same heuristic sense as above, the expected number of integers n for which (32) fails is

∞∑
n=1

0.011

n
√
n

= 0.011 · ζ(1.5) ≈ 0.029.

8 Computations

In order to compute X (n), it is rather slow to use the definition (1) directly. It is much faster

to use first (28.I) and then (32) in order to validate the result. With this method, the author has

12



computed for various values of x the number of integers n ≤ x for which (25.II) to (28.II) hold:

x (25.II) (26.II) (27.II) (28.II)

102 28 3 0 0

104 2684 16 0 0

106 269087 169 0 0

108 26897996 1633 0 0

1010 2689542678 16697 0 0

1012 268951262882 166699 0 0

1014 26895096291945 1669923 0 0

1016 2689509420037294 16702323 0 0

1018 268950939911815654 166985401 0 0

These results fit nicely with Theorem 3 and Conjecture 1. The computations also confirmed that

(32) holds for all n ≤ 1018. Given this fact, the expected number of integers for which (32) fails

decreases to
∞∑

n=1018+1

0.011

n
√
n
<

1

45,000,000,000
.

This motivates the statement from the introduction that the probability that a counter-example to

(7) exists is less than one in 45 billion.

It is a famous open problem similar to (32) to prove that the inequality{(
3

2

)n}
≤ 1−

(
3

4

)n
holds for all n ≥ 2. This conjecture is closely related to Waring’s Problem and has been verified for

all n up to 471,600,000 [15].

9 Ramanujan’s Q-function

Recall the definition of X (n) as the minimal number of students in a class such that the probability

of finding two students with the same birthday is at least 50 percent. Now suppose the students

enter the class one at a time, and let the stochastic variable T be the number of students present

when the first birthday coincidence occurs. Then T takes values 2, . . . , n+1 and has tail probabilities

P(T > x) = P (x) given by (1) for x = 1, 2, . . . Our function X (n) is the median of T . The expected

value can be written as Q(n) + 1 with

Q(n) :=
n∑
x=1

P (x) = 1 +

(
1− 1

n

)
+

(
1− 1

n

)(
1− 2

n

)
+ · · · (33)

This function is called Ramanujan’s Q-function because of its connection to the following problem

posed by Ramanujan in Journal of the Indian Mathematical Society in 1911, cf. [20, 21]: Shew that

1
2e
n = 1 +

n

1!
+
n2

2!
+ · · ·+ nn

n!
Θ,
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where Θ lies between 1
2 and 1

3 .2 In the 1912 issue, Ramanujan showed

Θ(n) =
n!en

2nn
−Q(n) =

n!en

2nn
+ 1−

∫ ∞
0

e−x
(

1 +
x

n

)n
dx,

gave the asymptotic series

Θ(n) =
1

3
+

4

135n
− 8

2835n2
− 16

8505n3
+ · · · ,

and posed a refined problem. The definition (33) is due to Knuth who derived rigorously the

asymptotic expansion of Q(n), cf. [14, pp. 112–118]. See also [2, 8] for the history and ultimate

solution of Ramanujan’s problems.

We give here a new derivation of the asymptotic expansion of Q(n) based on (11). Use P (x) =

exp(−L(x)) and the Taylor expansion of the exponential function to write

P (x) = exp

(
−x

2

2n

)
· exp

(
x

2n
−
∞∑
i=2

Si(x)

i · ni

)

= exp

(
−x

2

2n

)
·
(

1 +
x

2n
+
−4x3 + 9x2 − 2x

24n2
+ · · ·

)
for x = 1, . . . , n. To bound the tail sums, Lemma 1 gives

∞∑
i=t

Si(x)

i · ni
<

1

t
· x

t+1

nt

so that for example

P (x) = exp

(
−x

2

2n

)
·
(

1 +
x

2n
+O

(
x3

n2

))
.

Euler’s summation formula [10] gives the asymptotic series

n∑
x=1

xie−x
2/n = I − 1

20i +O
(
n−m

)
for i ≥ 0 even, and

n∑
x=1

xie−x
2/n = I +

m∑
t=i+1
t even

(−1)(t+i−1)/2Bt
t((t− i− 1)/2)!

n−(t−i−1)/2 +O
(
n−(m−i+1)/2

)
for i > 0 odd. Here m is an arbitrary (even) integer, 00 is defined as 1, and I is the integral∫ ∞

0
xie−x

2/ndx = 1
2Γ

(
i+ 1

2

)
n(i+1)/2

which can be evaluated using the familiar properties Γ
(
1
2

)
=
√
π, Γ(1) = 1, and Γ(i + 1) = i · Γ(i)

of the Gamma function. Putting everything together gives

Q(n) =

√
πn

2
− 1

3
+

1

12

√
π

2n
− 4

135n
+

1

288

√
π

2n3
+

8

2835n2
− 139

51840

√
π

2n5

+
16

8505n3
− 571

2488320

√
π

2n7
− 8992

12629925n4
+

163879

209018880

√
π

2n9
+O

(
1

n5

)
.

2The original has x rather than n.
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